Сколько оттенков цветов различает глаз человека

Содержание

Каковы пределы человеческого зрения?

Сколько оттенков цветов различает глаз человека

Адам Хадхази BBC Future

Правообладатель иллюстрации SPL

Корреспондент BBC Future рассказывает об удивительных свойствах нашего зрения – от способности видеть далекие галактики до возможности улавливать невидимые, казалось бы, световые волны.

Окиньте взглядом комнату, в которой находитесь – что вы видите? Стены, окна, разноцветные предметы – все это кажется таким привычным и само собой разумеющимся. Легко забыть о том, что мы видим окружающий нас мир лишь благодаря фотонам – световым частицам, отражающимся от объектов и попадающим на сетчатку глаза.

В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.

У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.

(Другие статьи сайта BBC Future на русском языке)

Благодаря прогрессу в области физики и биологии можно определить границы естественного зрения. “У любых видимых нами объектов есть определенный “порог”, ниже которого мы перестаем их различать”, – говорит Майкл Лэнди, профессор психологии и нейробиологии в Нью-Йоркском университете.

Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета — пожалуй, самой первой способности, которая приходит на ум применительно к зрению.

Правообладатель иллюстрации SPL Image caption Колбочки отвечают за цветовосприятие, а палочки помогают нам видеть оттенки серого цвета при низком освещении Наша способность отличать, например, фиолетовый цвет от пурпурного связана с длиной волны фотонов, попадающих на сетчатку глаза. В сетчатке имеются два типа светочувствительных клеток – палочки и колбочки. Колбочки отвечают за цветовосприятие (так называемое дневное зрение), а палочки позволяют нам видеть оттенки серого цвета при низком освещении – например, ночью (ночное зрение).

Содержащиеся в светочувствительных клетках рецепторы – опсины – поглощают электромагнитную энергию фотонов и производят электрические импульсы. Эти сигналы по оптическому нерву попадают в мозг, который и создает цветную картину происходящего вокруг нас.

В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.

Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа — за желто-красную (длинноволновую).

Все эти волны, а также их комбинации, позволяют нам видеть полный диапазон цветов радуги. “Все источники видимого человеком света, за исключением ряда искусственных (таких, как преломляющая призма или лазер), излучают смесь волн различной длины”, – говорит Лэнди.

Правообладатель иллюстрации Thinkstock Image caption Не весь спектр полезен для наших глаз…

Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.

По другую сторону видимого диапазона волн расположен ультрафиолетовый спектр, за которым следует рентгеновский, а затем – спектр гамма-излучения с фотонами, длина волн которых не превышает триллионные доли метра.

Хотя зрение большинства из нас ограничено видимым спектром, люди с афакией — отсутствием в глазу хрусталика (в результате хирургической операции при катаракте или, реже, вследствие врожденного дефекта) – способны видеть ультрафиолетовые волны.

В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.

В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны.

Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).

Сколько цветов мы видим?

В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.

“Точно подсчитать, сколько мы видим цветов, не представляется возможным, – говорит Кимберли Джемесон, научный сотрудник Калифорнийского университета в Ирвайне. – Некоторые видят больше, некоторые – меньше”.

Джемесон знает, о чем говорит. Она изучает зрение тетрахроматов – людей, обладающих поистине сверхчеловеческими способностями к различению цветов. Тетрахроматия встречается редко, в большинстве случаев у женщин.

В результате генетической мутации у них имеется дополнительный, четвертый вид колбочек, что позволяет им, по грубым подсчетам, видеть до 100 млн цветов.

(У людей, страдающих цветовой слепотой, или дихроматов, всего два типа колбочек – они различают не более 10 000 цветов.)

Сколько нам нужно фотонов, чтобы увидеть источник света?

Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.

В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.

Правообладатель иллюстрации SPL Image caption После операции на глазе некоторые люди приобретают способность видеть ультрафиолетовое излучение

Как показывают эксперименты, впервые проведенные в 1940-х гг., одного кванта света достаточно для того, чтобы наш глаз его увидел. “Человек способен увидеть один-единственный фотон, – говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфордском университете. – В большей чувствительности сетчатки просто нет смысла”.

В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.

Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.

Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.

Самый маленький и самый удаленный видимые объекты

Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.

“Единственное, что нужно глазу, чтобы что-то увидеть, – это определенное количество света, излученного или отраженного на него объектом, – говорит Лэнди. – Все сводится к числу достигших сетчатки фотонов. Каким бы миниатюрным ни был источник света, пусть даже он просуществует доли секунды, мы все равно способны его увидеть, если он излучает достаточное количество фотонов”.

Правообладатель иллюстрации Thinkstock Image caption Глазу достаточно небольшого количества фотонов, чтобы увидеть свет

В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.

Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.

Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.

С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.

Правообладатель иллюстрации Thinkstock Image caption Острота зрения снижается по мере увеличения расстояния до объекта

Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути.

Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца.

(Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)

Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны.

Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.

Предел остроты зрения

Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)

Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора — в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.

Правообладатель иллюстрации SPL Image caption Достаточно яркие объекты можно разглядеть на расстоянии в несколько световых лет

Ограничения остроты зрения зависят от нескольких факторов – таких как расстояние между отдельными колбочками и палочками сетчатки глаза. Не менее важную роль играют и оптические характеристики самого глазного яблока, из-за которых далеко не каждый фотон попадает на светочувствительную клетку.

В теории, как показывают исследования, острота нашего зрения ограничивается способностью различать около 120 пикселей на угловой градус (единицу углового измерения).

Практической иллюстрацией пределов остроты человеческого зрения может являться расположенный на расстоянии вытянутой руки объект площадью с ноготь, с нанесенными на нем 60 горизонтальными и 60 вертикальными линиями попеременно белого и черного цветов, образующими подобие шахматной доски. “По всей видимости, это самый мелкий рисунок, который еще в состоянии различить человеческий глаз”, – говорит Лэнди.

На этом принципе основаны таблицы, используемые окулистами для проверки остроты зрения. Наиболее известная в России таблица Сивцева представляет собой ряды черных заглавных букв на белом фоне, размер шрифта которых с каждым рядом становится все меньше.

Острота зрения человека определяется по тому, на каком размере шрифта он перестает четко видеть контуры букв и начинает их путать.
Правообладатель иллюстрации Thinkstock Image caption В таблицах для проверки остроты зрения используются черные буквы на белом фоне

Именно пределом остроты зрения объясняется тот факт, что мы не способны разглядеть невооруженным глазом биологическую клетку, размеры которой составляют всего несколько микрометров.

Но не стоит горевать по этому поводу. Способность различать миллион цветов, улавливать одиночные фотоны и видеть галактики на удалении в несколько квинтильонов километров – весьма неплохой результат, если учесть, что наше зрение обеспечивается парой желеобразных шариков в глазницах, соединенных с полуторакилограммовой пористой массой в черепной коробке.

Прочитать оригинал этой статьи на английском языке можно на сайте BBC Future.

Биология в вопросах и ответах

Сколько оттенков цветов различает глаз человека

Спонсор публикации статьи: сайт YogaDoors.ru предлагает открыть для себя удивительный мир Йоги. Большое количество статей и обзоров помогут подобрать свой комплекс упражнений и диету, расскажут про правильное выполнение асан и многое другое. Если Вас интересуют упражнения для начинающих, и Вы хотите заниматься йогой самостоятельно, то для Вас есть статьи, которые расскажут про то, с чего стоит начать заниматься хатха-йогой и айенгар-йогой, и йога дома станет доступной для Вас. Изменить свой образ жизни и достичь гармонии с собой и окружающим миром теперь можно и без посещений центров занятия йогой, сайт YogaDoors.ru позволит Вам самостоятельно ознакомиться с этой древней индийской философией.

Сколько цветов, учитывая оттенки, различает человеческий глаз и почему?

В литературе отсутствует однозначный ответ на вопрос, сколько оттенков цвета различает человеческий глаз. Приведем несколько ссылок. В книге «Физиология человека» под ред. Р.Шмидта и Г.Тевса в 1-м томе (М.: Мир, 1996) на с. 269 написано:«Цветовое пространство» нормального человека содержит примерно 7 млн различных валентностей, включая небольшую категорию ахроматических (серых, бесцветных) и весьма обширный класс хроматических. Хроматические валентности поверхностной окраски объекта характеризуются тремя феноменологическими качествами: тоном, насыщенностью и светлотой. В случае светящихся цветовых стимулов (например, цветного источника света) «светлота» заменяется «яркостью». В идеале цветовые тона – это «чистые» цвета. Тон может быть смешан с ахроматической валентностью, что дает различные оттенки цвета. Насыщенность оттенка – это мера относительного содержания в нем хроматических и ахроматических компонентов, а светлота определяется положением ахроматического компонента на шкале серого».В книге В.В. Мешкова и А.Б. Матвеева «Основы светотехники» (М.: Энергоатомиздат, 1989) на с.100 написано:«Исследования показали, что на видимом участке спектра глаз человека способен различать при благоприятных условиях около 100 оттенков по цветовому фону. По всему спектру, дополненному чистыми пурпурными цветами, в условиях достаточной для цветоразличения яркости (>10 кд/м) число различаемых оттенков по цветовому тону достигает 150».В книге Б.И. Степанова «Введение в современную оптику» (Минск: Наука и техника, 1989) на с. 93 написано:«Эмпирически установлено, что глаз воспринимает не только семь основных цветов, но и огромное множество промежуточных оттенков цвета и цветов, полученных от смешения света разных длин волн. Всего насчитывается до 15 000 цветовых тонов и оттенков».В «Физической энциклопедии» под ред. А.М. Прохорова в 5-м томе (М.: Большая Российская энциклопедия, 1998) на с. 420 написано:«Наблюдатель с нормальным цветовым зрением при сопоставлении различно окрашенных предметов или разных источников света может различать большое количество цветов. Натренированный наблюдатель различает по цветовым тонам около 150 цветов, по насыщенности – около 25, по светлоте – от 64 при высокой освещенности до 20 при пониженной».По-видимому, разночтение справочных данных связано с тем, что восприятие цвета может частично меняться в зависимости от психофизиологического состояния наблюдателя, степени его тренированности, условий освещения и т.п.Подробнее в книгеФизическая энциклопедия /А.М. Прохорова, т. 5. – М.: Большая Российская энциклопедия, 1998. с. 418–420.

Раньше говорили, что нервные клетки не восстанавливаются, а теперь вроде говорят, что это не совсем так. Так как же?

Нервные клетки, или нейроны, состоят из так называемого тела, в котором находится ядро, и отростков – аксона и дендритов. Нервные волокна – это отростки нейронов, покрытые глиальными клетками. Нейроны являются несменяемой клеточной популяцией, которая образуется в процессе эмбрионального развития. Затем они теряют способность делиться, но могут увеличиваться в размерах и давать новые отростки, через которые передаются нервные импульсы. Исключением являются рецепторные обонятельные клетки, которые обновляются каждые 30 суток. Говорить о том, что «нервные клетки не восстанавливаются», не совсем корректно: для всех нейронов характерен высокий уровень обмена веществ, особенно синтеза белков и РНК, то есть идет постоянная смена клеточных органелл. Интенсивный белковый синтез необходим для обновления структурных и метаболических белков цитоплазмы нейрона и его отростков. Отростки нейронов и периферические нервы способны к регенерации, или восстановлению, в случае их повреждения.Н.Г. Колосова

Литература

Физиология человека /Р.Шмидта. т. 1, 2. – М.: Мир, 1985.Быков. Цитология и общая гистология. – СПб.: Сотис, 1998.Гистология /Ю.И. Афанасьев, Н.А. Юрина. – М.: Медицина, 1989.

Почему возникает икота?

Икота – непроизвольный, обычно стереотипно повторяющийся короткий интенсивный рефлекторный вдох при закрытой или резко суженной ой щели, обусловленный внезапным сокращением диафрагмы (при одновременном сокращении мышц гортани). Каждый акт икоты сопровождается толчкообразным выпячиванием живота и характерным звуком (если ая щель не полностью закрыта). Икота возникает в результате спазматического сокращения диафрагмы легкого. Такие сокращения у нормального человека могут появиться по нескольким причинам:– переполнение желудка – переполненный едой желудок начинает давить на диафрагму, в результате чего она начинает судорожно сокращаться; – переохлаждение легких и нервов – если в легкие поступает чересчур холодный воздух, начинается его судорожное выталкивание наружу, т.е. икота;– нервный стресс – иногда икота возникает в результате нарушения вегетативной регуляции, которая сопровождает стрессорное перевозбуждение мозга.

Икота может быть симптомом различных заболеваний и изредка является проявлением временных функциональных расстройств у здоровых лиц во время употребления сухой и твердой пищи, при переохлаждении, после приема алкоголя, а иногда и без видимой причины.

Икота связана с нарушением проведения нервных импульсов, с возникновением патологических импульсов в двигательных волокнах диафрагмального нерва (то есть нерва, по которому к мышцам диафрагмы приходит сигнал сокращаться). Эти волокна входят в состав эфферентного (двигательного) звена сложной рефлекторной дуги.

Афферентное (чувствительное) звено этой рефлекторной дуги представлено чувствительными окончаниями и волокнами диафрагмального и блуждающего нервов (то есть чувствительными окончаниями в диафрагме и по всему организму). В шейном отделе спинного мозга существует так называемый центр икоты.

Существует связь и с высшими отделами мозга, в том числе с некоторыми участками коры головного мозга.

То есть рефлекторную дугу, связанную с икотой, можно описать так: в центр икоты по разным путям приходят сигналы при каких-то определенных изменениях в организме. Из центра икоты на диафрагму посылается импульс, вызывающий икоту.

Источник

Большая медицинская энциклопедия. Т. 9. – М.: Советская энциклопедия, 1989, с. 68.

Почему только растения способны к вегетативному размножению?

Вопрос задан не совсем корректно: животные, способные размножаться вегетативно, есть. Такой способностью среди многоклеточных животных обладают губки, кишечнополостные, плоские черви, мшанки, некоторые кольчатые черви, из хордовых – оболочники – животные низкого уровня организации.

Вегетативное размножение – образование новой особи из части родительской, один из способов бесполого размножения, свойственный многоклеточным организмам. Как и любое бесполое размножение, приводит к образованию генетически однородных групп особей.

У животных вегетативное размножение осуществляется либо путем деления – обособления частей тела, принадлежащих ранее единому индивидууму, причем каждая часть дополняет себя до состояния целого индивидуума, либо посредством почкования.

Почему высшие животные утратили способность к вегетативному размножению, тогда как высшие растения достигли здесь совершенства? Вспомним растение, которое портит жизнь каждому огороднику, – пырей ползучий, способный за одно лето дать до миллиона потомков при помощи своих подземных корней. При этом он успешно размножается и семенами.

Дело в том, что эволюция животных и растений шла в разных направлениях. Если животные могут убежать, переместиться в более благоприятные условия, то растения, чтобы выжить, используют два варианта размножения.

Кроме того, у животных каждый орган, каждая часть тела, а у некоторых насекомых даже каждая клетка находится на строго определенном месте и выполняет строго определенные функции, которые за них другой орган выполнить не сможет. Люди, например, по общему строению одинаковы, а отличить друг от друга воробьев на улице практически невозможно.

Но двух одинаковых деревьев вы не найдете: у одного веток больше, чем у другого, а те два отличаются количеством стволов. Каждый ствол со своими ветками, листьями и корнями несет в себе все свойства целого дерева, все необходимые органы. Если один ствол срубят, второй может продолжать жить.

Чтобы организм, животный или растительный, мог вегетативно размножаться, его отдельные клетки или фрагменты должны быть способны развиться до целого организма – кусочек корня пырея дает новые растения со всеми присущими ему органами – листьями, колосьями и т.д.

, если дождевого червя разрезать пополам лопатой, то задняя половинка восстановит себе переднюю, а передняя – заднюю. Морская звезда может из одного лучика восстановиться до целой звезды. Можно привести еще много подобных примеров, но очевидно, что человека нельзя восстановить из кусочка, например из ноги.

Однако если человеческий зародыш, когда он состоит всего из двух клеток, разделится пополам, каждая клетка развивается в целый организм, рождаются однояйцевые близнецы, и это тоже можно назвать вегетативным размножением.

На более поздних этапах развития клетки животных приобретают специализацию, и чем дальше она зашла, тем меньше способность клетки изменить направление своего развития. Окончательно специализировавшиеся клетки уже не обладают способностью делиться. Связано это с тем, что происходят необратимые изменения в ДНК.

Можно отметить и такой аспект: размножение семенами занимает много времени – потомство появится в лучшем случае через месяцы. Скорость вегетативного размножения может быть огромной (вспомним пырей). Такое преимущество полезно организмам, потомки которых имеют каждый в отдельности низкие шансы на выживание.

Решая эту проблему, они идут по пути увеличения количества потомков. Высшие животные пошли по другому пути – количество детенышей мало, а жизненная энергия тратится на повышение шансов на выживание каждого из них: длительное внутриутробное развитие, высиживание, выкармливание, воспитание и т.д. Еще один важный момент.

В развитии зародыша млекопитающих (и многих других животных) большое участие принимает материнский организм. Развитие плода в значительной степени направляется гормонами матери. Создание таких условий для потомка при вегетативном размножении в природе возможно только на самых ранних этапах развития – вспомним близнецов. В научных экспериментах можно искусственно поместить на место обычного зародыша клетку взрослого организма и посмотреть, будет ли из нее развиваться нормальный организм – вы слышали про клонирование овечки Долли и шум вокруг возможности клонирования человека. Клонирование – получение особей, генетически полностью идентичных родительской. То есть получение клонированной овечки из клетки вымени матери можно в некоторой степени считать вегетативным размножением. Однако подобные результаты получаются крайне редко – для млекопитающих в единичных случаях. Для мышей показано, что клетки зародыша, находящегося на стадии более четырех клеток, уже полностью теряют способность развиться в нормальный организм. Объясняется это тем, что происходят необратимые изменения в ДНК, связанные со специализацией клеток.

Клетки же растений не теряют способности развиваться в полноценный организм – если создать им соответствующие условия, можно практически из любой клетки, любого фрагмента растения получить новое растение.

Продолжение следует

Интересные факты о глазах. Сколько цветов различает человеческий глаз? Какой самый редкий цвет глаз в мире

Сколько оттенков цветов различает глаз человека

  • 6 Октября, 2018
  • Офтальмология
  • Тимошенко Михаил

Лишь единицы обращают внимание на то, какими уникальными механизмами чувств нас одарила природа.

Особенно удивительным является зрение, которое позволяет ориентироваться в пространстве, различать цвета, реагировать на движение.

В нашем материале рассмотрим самые интересные факты о глазах, поговорим о строении органа.

Строение

Как устроены наши глаза? Зрительный орган имеет неправильную шаровидную форму. Диаметр глазного яблока составляет порядка 2,5 сантиметра. Сюда поступают лучи света, отражающиеся от предметов.

За восприятие световых волн отвечает сетчатка, которая расположена на задней стенке органа. Аппарат сформирован целым рядом слоев клеток, чувствительных к воздействию света.

Информация передается по зрительному нерву к соответствующему отделу мозга.

Сетчатка занимает самую незначительную площадь. Чтобы свет фокусировался на небольшом участке тканей, должно произойти преломление лучей. За выполнение функции отвечает хрусталик, имеющий вид своеобразной линзы, равнозначно выпуклой по обеим сторонам.

Часть зрительного органа расположена ближе к фронтальной области глазного яблока. Хрусталик обладает способностью к изменению кривизны. Изгиб увеличивается, если требуется распознавание приближенных объектов.

Когда необходимо настроиться на четкое видение отдаленных предметов, хрусталик уплощается.

Преломление световых лучей положено также на стекловидное тело, состоящее из желеобразной массы. Часть органа не только обеспечивает перенаправление света на сетчатку. Благодаря аппарату поддерживается стабильная форма глазного яблока. Ткани стекловидного тела не позволяют тканям органа сжиматься под воздействием внешних факторов.

Свет поступает в глаз человека через зрачок. Размер последнего способен изменяться. Наблюдается подобное, если человек оказывается в темном помещении либо, наоборот, выходит на свет.

Увеличение площади зрачка дает возможность лучше захватывать лучи. Механизм отвечает за регуляцию количества проникающего света.

Под зрачком находится радужная оболочка – скопление пигментных клеток, которые позволяют различать цвет.

Карий – самый распространенный цвет глаз

На планете больше всего людей с карими глазами. Примечательно, что оттенок преобладает у новорожденных детей во всех частях земного шара. Об этом заботится сама природа. Глаза карего цвета содержат обилие пигмента меланина, который защищает зрительный орган от ослепляющих солнечных лучей. Благодаря механизму ткани глаз меньше подвергаются разрушительным воздействиям.

Веки всегда смыкаются во время чиханья

Почему вы не можете чихнуть с открытыми глазами? Во время рефлекторного процесса раздражается тройничный нерв. Последний принимает участие в регуляции работы зрительного органа.

В спокойном состоянии тройничный нерв позволяет глазам оставаться открытыми. Чихание вызывает его возбуждение. Веки машинально прикрываются.

Функция позволяет избежать разрыва кровеносных сосудов и вылета глаз из орбит в результате повышения внутреннего давления во время чихания. Механизм выступает естественной защитой организма.

Глаза закрываются при поцелуе

Продолжим рассматривать интересные факты о глазах. Согласно наблюдениям, веки часто прикрываются в ходе поцелуя. Ученые объясняют явление довольно просто. Действие вызывает переизбыток чувств. Возникает эмоциональное перенапряжение. На мозг оказывается высокая сенсорная нагрузка. Закрывая глаза во время поцелуя, люди инстинктивно устраняют избыточные нагрузки на нервную систему.

О самом редком цвете глаз

Какой самый редкий цвет глаз в мире? Ученые установили, что наименее распространенным выступает зеленый оттенок радужной оболочки. «Изумрудные» глаза встречаются всего среди 2% населения планеты. Существует вполне рациональное объяснение явлению.

Ученые связывают феномен с человеческими предрассудками. В эпоху Средневековья активно действовала церковная инквизиция. Зеленоглазых женщин часто отправляли на костер по подозрению в колдовстве. Именно так уничтожались люди с красивейшим оттенком глаз.

Голубоглазых людей можно условно считать родственниками

Интересным фактом о глазах является то, что голубой оттенок радужной оболочки сформировался у людей примерно 10 тысяч лет тому назад. Ранее человечество оставалось кареглазым.

Произошло подобное в результате случайной генной мутации. Изменение вызвало снижение концентрации пигмента меланина в структуре зрительного органа.

Радужная оболочка у родственных людей, которые выступали носителями гена, стала приобретать голубоватый оттенок.

Человек видит мир «перевернутым»

Удивительно, но на сетчатке зрительного органа изначально формируется перевернутая картинка окружающих объектов. Механизм реализован в фотоаппаратах. Уменьшенное изображение образуется на сетчатке глаза. Позже происходит обработка информации головным мозгом. Выполняется коррекция данных, что позволяет человеку нормально ориентироваться в пространстве.

Как показывают результаты исследований, глаза новорожденных воспринимают картинку окружения в перевернутом виде примерно в течение двух недель. Со временем мозг адаптируется к новым условиям и формирует правильное изображение.

Существует довольно интересный эксперимент. Ученые из Калифорнийского университета предложили добровольцам носить очки, которые переворачивают картинку вверх ногами. На протяжении первых суток участники теста страдали от полнейшей дезориентации. Однако через пару недель мозг приспособился к непривычным условиям. Сформировались новые зрительные координации.

Владельцы необычных очков стали без лишних проблем ориентироваться в пространстве. Когда наступило время снять приспособление, участники эксперимента испытали немалые трудности. Позже все вновь пришло в норму. Исследование лишний раз подтверждает способность зрительного органа и головного мозга проявлять гибкость в зависимости от изменяющегося окружения.

Сколько цветов различает человеческий глаз?

В теории каждый индивид способен распознавать порядка десятка миллионов оттенков. Однако в реальности подобное наблюдается редко, причем среди людей творческих профессий. Речь идет о дизайнерах, фотографах, художниках, представителях других сфер деятельности, чья повседневная работа связана с цветом.

В некоторых случаях возникает нарушение восприятия оттенков. Например, дальтоники не различают зеленого и красного. Таких людей в клинической практике называют дихроматами. Интересным фактом о глазах является то, что аналогичный тип зрения характерен для большинства животных, которые относятся к категории млекопитающих.

Глаза могут быть разного цвета

Явление известно под определением гетерохромия. Радужные оболочки глаз человека имеют разный цвет. Феномен носит врожденный и приобретенный характер. Аномалия бывает частичная. В данном случае нетипичный оттенок получает лишь определенная зона зрачка.

Своеобразный дефект выступает обыкновенной мутацией. Отклонение не скрывает опасности для здоровья. Зрение остается нормальным. Человек не ощущает никаких проблем с восприятием окружающего мира.

Осложнения наблюдаются лишь в случае травматической причины развития гетерохромии.

Механическое повреждение сетчатки, которое сопровождается изменением оттенка радужной оболочки, может вызывать нарушения работы нервной системы.

Разноцветные глаза встречаются среди целого ряда знаменитостей. Например, гетерохромия отмечается у актрис Милы Йовович, Кейт Босуорт, Клаудии Шиффер, Деми Мур, Милы Кунис. Среди известных мужчин носителями генетической мутации выступают Генри Кавилл и Джош Хендерсон.

Поедание моркови не улучшает зрение

Каждый из нас в детстве неоднократно слышал от родителей, что употребление моркови благотворно сказывается на состоянии зрения. Несомненно, витамины группы А, обилие которых содержит овощ, приносят пользу здоровью. Однако ученым не удалось найти прямой связи между остротой зрения и пристрастием к поеданию моркови.

Считается, что миф сформировался в ходе Второй мировой войны. Британские инженеры изобрели новый радар, который давал возможность летчикам раньше замечать вражеские самолеты на приборной панели.

Желая скрыть от неприятеля факт существования технологии, военное руководство распространило в средствах массовой информации публикации, где говорилось, что выдающиеся успехи боевых пилотов обусловлены введением в армии особой морковной диеты.

Сколько цветов мы можем видеть?

Здоровый человеческий глаз имеет три типа колбочек, каждый из которых может различать порядка 100 разных цветовых оттенков, поэтому большинство исследователей сходятся во мнении, что наши глаза в общем могут различить примерно миллион оттенков. Тем не менее восприятие цвета — это довольно субъективная способность, которая варьируется от человека к человеку, поэтому определить точные цифры довольно сложно.

«Довольно трудно переложить это на цифры, — говорит Кимберли Джеймисон, научный сотрудник Калифорнийского университета в Ирвине. — То, что видит один человек, может быть лишь частью цветов, которые видит другой человек».

Джеймисон знает, о чем говорит, поскольку работает с «тетрахроматами» — людьми, обладающими «сверхчеловеческим» зрением.

Эти редкие индивиды, в основном женщины, обладают генетической мутацией, которая подарила им дополнительные четвертые колбочки. Грубо говоря, благодаря четвертому набору колбочек, тетрахроматы могут разглядеть 100 миллионов цветов.

(Люди с цветовой слепотой, дихроматы, имеют только два вида колбочек и видят примерно 10 000 цветов).

Сколько минимум фотонов нам нужно видеть?

Для того чтобы цветное зрение работало, колбочкам, как правило, нужно намного больше света, чем их коллегам-палочкам. Поэтому в условиях низкой освещенности цвет «гаснет», поскольку на передний план выходят монохроматические палочки.

В идеальных лабораторных условиях и в местах сетчатки, где палочки по большей части отсутствуют, колбочки могут быть активированы лишь горсткой фотонов. И все же палочки лучше справляются в условиях рассеянного света. Как показали эксперименты 40-х годов, одного кванта света достаточно, чтобы привлечь наше внимание.

«Люди могут реагировать на один фотон, — говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфорде. — Нет никакого смысла в еще большей чувствительности».

В 1941 году исследователи Колумбийского университета усадили людей в темную комнату и дали их глазам приспособиться.

Палочкам потребовалось несколько минут, чтобы достичь полной чувствительности — вот почему у нас возникают проблемы со зрением, когда внезапно гаснет свет.

Затем ученые зажгли сине-зеленый свет перед лицами испытуемых. На уровне, превышающем статистическую случайность, участники смогли зафиксировать свет, когда первые 54 фотона достигли их глаз.

После компенсации потери фотонов через всасывание другими компонентами глаза, ученые обнаружили, что уже пять фотонов активируют пять отдельных палочек, которые дают ощущение света участникам.

Каков предел самого мелкого и дальнего, что мы можем увидеть?

Этот факт может вас удивить: нет никакого внутреннего ограничения мельчайшей или самой далекой вещи, которую мы можем увидеть. Пока объекты любого размера, на любом расстоянии передают фотоны клеткам сетчатки, мы можем их видеть.

«Все, что волнует глаз, это количество света, которое попадает на глаз, — говорит Лэнди. — Общее число фотонов. Вы можете сделать источник света до смешного малым и удаленным, но если он излучает мощные фотоны, вы его увидите».

К примеру, расхожее мнение гласит, что темной ясной ночью мы можем разглядеть огонек свечи с расстояния 48 километров. На практике, конечно, наши глаза будут просто купаться в фотонах, поэтому блуждающие кванты света с больших расстояний просто потеряются в этой мешанине.

«Когда вы увеличиваете интенсивность фона, количество света, которое вам необходимо, чтобы что-то разглядеть, увеличивается», — говорит Лэнди.

Ночное небо с темным фоном, усеянным звездами, являет собой поразительный пример дальности нашего зрения.

Звезды огромны; многие из тех, что мы видим в ночном небе, составляют миллионы километров в диаметре. Но даже ближайшие звезды находятся минимум в 24 триллионах километров от нас, а потому настолько малы для нашего глаза, что их не разберешь.

И все же мы их видим как мощные излучающие точки света, поскольку фотоны пересекают космические расстояния и попадают в наши глаза.

Все отдельные звезды, которые мы видим в ночном небе, находятся в нашей галактике — Млечный Путь.

Самый далекий объект, который мы можем разглядеть невооруженным глазом, находится за пределами нашей галактики: это галактика Андромеды, расположенная в 2,5 миллионах световых лет от нас.

(Хотя это спорно, некоторые индивиды заявляют, что могут разглядеть галактику Треугольника в чрезвычайно темном ночном небе, а она находится в трех миллионах световых лет от нас, только придется поверить им на слово).

Триллион звезд в галактике Андромеды, учитывая расстояние до нее, расплываются в смутный светящийся клочок неба. И все же ее размеры колоссальны. С точки зрения видимого размера, даже будучи в квинтиллионах километрах от нас, эта галактика в шесть раз шире полной Луны. Однако наших глаз достигает так мало фотонов, что этот небесный монстр почти незаметен.

Насколько острым может быть зрение?

Почему мы не различаем отдельных звезд в галактике Андромеды? Пределы нашего визуального разрешения, или остроты зрения, накладывают свои ограничения. Острота зрения — это возможность различать такие детали, как точки или линии, отдельно друг от друга, чтобы те не сливались воедино.

Таким образом, можно считать пределы зрения числом «точек», которые мы можем различить.

Границы остроты зрения устанавливают несколько факторов, например, расстояния между колбочками и палочками, упакованными в сетчатке.

Также важна оптика самого глазного яблока, которое, как мы уже говорили, предотвращает проникновение всех возможных фотонов к светочувствительным клеткам.

Теоретически, как показали исследования, лучшее, что мы можем разглядеть, это примерно 120 пикселей на градус дуги, единицу углового измерения. Можете представить это как черно-белую шахматную доску 60 на 60 клеток, которая умещается на ногте вытянутой руки. «Это самый четкий паттерн, который вы можете разглядеть», — говорит Лэнди.

Проверка зрения, вроде таблицы с мелкими буквами, руководствуется теми же принципами. Эти же пределы остроты объясняют, почему мы не может различить и сосредоточиться на одной тусклой биологической клетке шириной в несколько микрометров.

Но не списывайте себя со счетов. Миллион цветов, одиночные фотоны, галактические миры за квантиллионы километров от нас — не так уж и плохо для пузырька желе в наших глазницах, подключенных к 1,4-килограммовой губке в наших черепах.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.